Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

نویسندگان

  • Juciane Maria de Andrade Castro
  • Rodrigo R. Resende
  • Luciana Mirotti
  • Esther Florsheim
  • Layra Lucy Albuquerque
  • Adriana Lino-dos-Santos-Franco
  • Eliane Gomes
  • Wothan Tavares de Lima
  • Marcelo de Franco
  • Orlando Garcia Ribeiro
  • Momtchilo Russo
چکیده

Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice

The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...

متن کامل

Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle

BACKGROUND Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still un...

متن کامل

The role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice

The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...

متن کامل

Effect of the cholinergic and opioid receptor mechanisms on nicotine-induced analgesia

  In this study, we investigated the effect of nicotinic receptor agonists and antagonists on the analgesic response to morphine in the formalin test. In experiments conducted in mice, nicotine produced an early dose-dependent analgesic effect. At a dose of 0.5 mg/kg, mecamylamine, a nicotinic receptor inhibitor, suppressed the analgesic effect induced by 0.1 mg/kg nicotine in both stages of th...

متن کامل

Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice.

Cholinergic tone contributes to airflow obstruction in chronic obstructive pulmonary disease. Accordingly, anticholinergics are effective bronchodilators by blocking the muscarinic M3 receptor on airway smooth muscle. Recent evidence indicates that acetylcholine also contributes to airway inflammation. However, which muscarinic receptor subtype(s) regulates this process is unknown. In this stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013